Note that:
\( – \left| x \right| \leq x \leq \left| x \right|\)
\( – \left| y \right| \leq y \leq \left| y \right|\)
After adding,
\( – \left( {\left| x \right| + \left| y \right|} \right) \leq x + y \leq \left( {\left| x \right| + \left| y \right|} \right)\)
Use the fact that \(\left| b \right| \leq a \Leftrightarrow – a \leq b \leq a \) (with \(b\) replaced by \(x+y\) and \(a\) by \(\left| x \right| + \left| y \right|\)), we have
\(\left| {x + y} \right| \leq \left| x \right| + \left| y \right|\)
Now, note that
\(\left| {x – y} \right| = \left| {\left( {x – z} \right) + \left( {z – y} \right)} \right|\)
Now we use tre triangle inequality and the fact that \(\left| {z – y} \right| = \left| {y – z} \right|\):